پژوهش براي بررسي تغيير مقاومت الكتريكي اجسام در دماهاي پائين براي نخستين بار توسط دانشمند اسكاتلندي جيمز دئِور در اواسط قرن نوزدهم آغاز شد. در سال 1864، دو دانشمند لهستاني به نامهاي زيگموند روبلوفسكي و كارل اولزفسكي كه روشي براي براي مايع ساختن اكسيژن و نيتروژن، يافته بودند، به بررسي خواص فيزيكي عناصر و ازجمله مقاومت الكتريكي در دماهاي خيلي كم ادامه دادند و پيشبيني نمودند مقاومت الكتريكي در دماهاي كم به شدت كاهش مييابد. روبلوفسكي و اولزفسكي نتايج فعاليت خود را در سال 1880 منتشر ساختند. بعد از آن دِئور و فلمينگ نيز پيشبيني خود را مبني بر الكترومغناطيس شدن كامل فلزات خالص در دماي صفر مطلق بيان داشتند. البته دئور بعدها تئوري خود را اصلاح و اعلام داشت مقاومت اينگونه فلزات در دماي مورد اشاره به صفر نميرسد اما مقدار بسيار كمي خواهد بود. والتر نرست نيز با بيان قانون سوم ترموديناميك بيان داشت كه صفر مطلق دستنيافتني است. كارل ليند و ويليام همپسون آلماني در همين زمانها روش خنكسازي و مايع ساختن گازها با افزايش فشار را به ثبت رساندند.
در سال 1900، نيكلا تسلا كه با سيستم خنكسازي ليند كار ميكرد، پديده تقويت سيگنالهاي الكتريكي را با سرد شدن اجسام كه درنتيجه كاهش مقاومت آنها بود، مشاهده و به ثبت رساند. سرانجام خاصيت ابررسانايي توسط پروفسور هلندي، كمرلينک اونز، در سال 1911 و زمانيكه وي سرگرم آزمايش تئوري دئور بود، در دانشگاه ليدن مشاهده شد. اونز دريافت که اگر جيوه در هليم مايع يعني حدود 2/4 درجه كلوين قرار گيرد، مقاومت الکتريکي آن از بين ميرود. سپس يك حلقه سربي را در دماي 7 درجه كلوين ابررسانا نمود و قوانين فارادي را بر روي آن آزمايش كرد و مشاهده نمود وقتي با تغيير شار در حلقه جريان القايي توليد شود، حلقه سربي بر عكس رساناهاي ديگر رفتار مينمايد. يعني بعد از قطع ميدان تا زمانيكه در حالت ابر رسانايي قرار دارد، جريان الكتريكي را تا مدت زيادي حفظ ميكند. به عبارت ديگر بعد از به وجود آمدن جريان الكتريكي ناشي از ميدان مغناطيسي در يك سيم ابررسانا، سيم حتي بدون ميدان خارجي يا مولد الكتريكي نيز ميتواند حامل جريان باشد. اونز اين رخداد را در آزمايشگاه دانشگاه ليدن با ايجاد جريان ابررسانايي در يک سيمپيچ و سپس حمل سيمپيچ همراه با سرد کنندهاي که آن را سرد نگه ميداشت به دانشگاه کمبريج به عموم نشان داد. يافته اونز منجر به اعطاي جايزه نوبل فيزيك در سال 1913 به وي شد.
اونز همچنين متوجه شد براي هر يك از مواد ابررسانا، دمايي به نام دماي بحراني وجود دارد كه وقتي ماده از اين دما سردتر شود، جسم ابررسانا ميگردد و در دماهاي بالاتر از اين دما، جسم داراي مقاومت الکتريکي است. دماي بحراني عناصر مختلف متفاوت است. مثلا” دماي بحراني جيوه حدود 5 درجه كلوين، سرب 9 درجه كلوين و نيوبيوم 2/9 درجه كلوين ميباشد و براي بعضي آلياژها و تركيبات مانند Nb3Sn و Nb3Ge دماي بحراني به 18 و 23 درجه كلوين نيز ميرسد. البته فلزات رسانايي مانند طلا، نقره و حتي مس نيز هستند كه تلاش براي رساندن مقاومت ويژهشان به صفر بي نتيجه مانده است و مشخص نيست اگر به صفر مطلق برسند مقاومت آنها چقدر خواهد بود. رسانيدن دماي ابررساناهاي متعارف به اين دما نيازمند وجود هليم مايع ميباشد كه بسيار پرهزينه، خطرناك و مشکل است. لذا از همان ابتدا تلاش براي توليد ابررساناهايي با دماي بحراني بالاتر شروع شد و محققان در تلاشند مواد ابررسانايي با دماي بحراني بالاتر پيدا كنند.
از كشف ابررسانايي در سال 1911 تاكنون، هيچ نظريه فيزيكي جامعي نتوانسته است به بيان دقيق علت خاصيت ابررسانايي بپردازد. در سال 1957 سه فيزيكدان آمريكايي به نامهاي باردين، كوپر و شريفر در دانشگاه ايلينويز نظريهاي براي توجيه پديده ابررسانايي در ابررساناهاي متعارف ارائه دادند كه با نام آنها به نظريه BCS معروف گرديد. براساس اين نظريه در ابررساناهاي معمولي، الكترونهايي كه در رسانايي جريان نقش دارند، جفتهايي تشكيل ميدهند و متقابلاً با عواملي كه باعث مقاومت الكتريكي ميشوند، مقابله ميكنند. ابداع تئوري BCS نيز براي سه دانشمند آمريكايي جايزه توبل 1972 را به ارمغان آورد. اينكه 4۶ سال طول کشيد تا توجيهي براي پديده ابررسانايي يافت شود، دلايلي داشت. دليل اول اينكه جامعة فيزيک تا حدود بيست سال مباني علمي لازم براي ارائه راه حل مسئله را كه تئوري کوانتوم فلزات معمولي بود نداشت. دوم اينکه تا سال ۱۹۳۴ هيچ آزمايش اساسي در اين زمينه انجام نشد. سوم اينکه وقتي مباني علمي لازم بدست آمد، به زودي مشخص شد انرژي مشخصه وابسته به تشکيل ابررسانايي بسيار کوچک يعني حدود يک مليونيم انرژي الکتريکي مشخصة حالت عادي است. بنابراين نظريه پردازان توجهشان را به توسعة يک تفسير رويدادي از جريان ابررسانايي جلب کردند. اين مسير توسط فريتز لاندن رهبري ميشد. وي در سال ۱۹۵۳ به نکتة زير اشاره کرد: “ابررسانايي پديدهاي کوانتومي در مقياس ماکروسکوپي است و با جداسازي حالت حداقل انرژي از حالات تحريک شده بوسيلة وقفه هاي زماني رخ ميدهد.” به علاوه وي بيان داشت كه ديامغناطيس شدن ابررساناها يک مشخصه بنيادي است. تئوري BCS در توضيح و تفسير رويدادهاي ابررسانايي موجود و هم چنين در پيشگويي رويدادهاي جديد نسبتاً موفق بود. در ژوئيه 1959، در اولين کنفرانس بزرگي كه بعد از ارائه ي نظريه ي BCS با موضوع با ابررسانايي در دانشگاه کمبريج برگزار شد، ديويد شوئنبرگ كنفرانس را با اين جمله آغاز کرد: «حالا بايد ببينيم تا چه حد مشاهدات با حقايق نظري جور در ميآيند …؟»
کمي بعد از انتشار نتايج اولية تئوري BCS، در تابستان سال 1957 سه دانشمند دانماركي به نامهاي آگ بور، بن موتلسون و ديويد پاينز، در کپنهاگ نشان دادند که نوترونها و پروتونهاي موجود در هسته اتم به خاطر جذب دوسويه شان جفت ميشوند و بدينوسيله توانستند معماي قديمي پديدة هستهاي را توجيه نمايند. در همين زمان يوشيرو نامبونيز در شيکاگو دريافت که ترتيب جفت شدن BCS براي پديدههاي انرژي بالا در فيزيک ذرات ابتدائي نيز صحت دارد. بايد گفت در اثر ارائه تئوري BCS بود كه پژوهشگران فلزات ابررساني جديدي را معرفي کردند و مشتاقانه به دنبال موادي گشتند که در دماهاي نسبتاً بالاتر از 20 کلوين ابررسانا ميشوند. بعد از ارائه تئوري BCS، دو آلياژ جديد نيز معرفي شدند. يكي مواد الکترون سنگين مانند CeCu2Si2، UPt3 و UBe13 که به عنوان ابررساناهايي در دماهاي حدود يک کلوين توسط فرانك استگليش در آلمان و زاچاري فيسك، جيم اسميت و هانس اوت در آمريكا شناخته شدند و ديگري فلزات آلي تقريبا دو بعدي با دماي بحراني حدود ده درجه کلوين كه در پاريس توسط دانيل ژرومه کشف شد. باوجود تلاشهاي زياد بند ماتيوس که حدود صد ماده ابررسانا را کشف کرد، هنوز حد بالايي براي دماي مواد ابررسانا وجود داشت. دمايي که از مکانيسم به کار رفته براي ابررسانايي يعني تعامل فونون القائي ناشي ميشد. چنانكه نور كوانتومي را فوتون مينامند، اصوات كوانتومي را نيز فونون ناميدهاند.
در سال 1962 جوزفسون انگليسي در 22 سالگي آزمايشاتي روي جفت الكترونهاي كوپر انجام داد كه منجر به مشاهده و اعلام پديدهاي شد كه خاصيت تونلزني يا اثر جوزفسون نام گرفت. بر اساس اثر جوزفسون، درصورتيكه دو قطعه ابررسانا توسط يك عايق بسيار نازك (حدود يك نانومتر) به يكديگر متصل شوند، جفت الكترونهاي كوپر ميتوانند از عايق عبور نمايند. مقدار جريان الكتريكي ايجاد شده به ولتاژ اتصال و ميدان مغناطيسي وابسته است. ارائه تئوري مزبور براي جوزفسون و دو دانشمند ديگر يعني لئو ايزاكي و ايوار گياور كه فعاليتهاي مشابهي در بررسي پديده تونل زني داشتند جايزه نوبل 1973 را به ارمغان آورد.
حدود 70 سال پيشرفتهاي انجام شده براي افزايش دماي بحراني به كندي انجام گرفت. از سال 1911 تا سال 1973 يعني حدود 62 سال دانشمندان تنها توانستند دماي بحراني را از 4 درجه به 3/23 درجه كلوين كه كمي بيشتر 3/20 كلوين يعني دماي ئيدروژن مايع است برسانند اما كار با ئيدروژن مايع نيز پرهزينه، مشكلآفرين و خطرساز بود و كاربردهاي ابررسانا را محدود ميساخت. در سالهاي بعد علاوه بر فلزات و آلياژهاي فلزي، فعاليتهايي در زمينه تركيبات نيمهفلزي توسط برخي دانشمندان آغاز شد اما هنوز مادهاي ديگري به جز فلزات و آلياژها يافته نشده بود كه بتواند در دماهاي مورد انتظار ابررسانا باشد. سرانجام در 27 ژانويه سال 1986 جرج بدنورز و آلكس مولر در مؤسسه تحقيقاتي IBM شهر زوريخ سوئيس موفق به كشف پديدة ابررسانايي در سراميكي از نوع اكسيد مس و شامل لانتانوم و باريوم شدند. دماي بحراني نمونه ساخته شده، حدود 35 درجه كلوين بود و آنها نيز به خاطر كشف ابررساناهاي دمابالا (HTS) موفق به دريافت جايزة نوبل در سال 1987 شدند. طي مدت زمان كوتاهي پس از كشف ابررسانايي دما بالا، دسترسي به دماهاي بحراني بالاتر به سرعت توسعه يافت. يک ماه بعد از كشف بدنورز و مولر، تاناكا و همکاران وي در توکيو نتايج آنها را تأييد نمودند و نتايج فعاليت آنها در يکي از نشريات ژاپني به چاپ رسيد. اندكي بعد از كشف اكسيد مس حاوي باريوم و لانتانوم، در نتيجه همکاري پاول چو از دانشگاه هوستون و مانگ كنگ وو از دانشگاه آلاباما، عضو جديدي از خانواده مواد ابررساناهاي دما بالا با جايگزيني ايتريوم Y به جاي لانتانوم كشف شد. اين ماده سراميكي كه دماي بحراني آن به 92 درجه كلوين ميرسيد، به YBCO معروف شد. با توجه به نقطه جوش نيتروژن كه 77 درجه كلوين در فشار يك اتمسفر است، براي سرد شدن اين ابررسانا تا دماي بحراني استفاده از نيتروژن مايع هم امكانپذير بود كه بسيار ارزانتر و بيخطرتر از ئيدروژن و هليم مايع بود. بنابراين فقط در طي يک سال از کشف اصلي، دماي انتقال به حالت ابررسانايي افزايش سه برابر داشت و واضح بود که انقلاب ابررساناها شروع شده است. براي پاسداشت تحول مهمي كه در علم فيزيك واقع شده بود، توسط انجمن فيزيکدانان آمريکايي در بعدازظهر يکي از روزهاي مارس 1987 جشني هم در نيويورک برگزار شد. اين جشن 3000 شرکت کننده داشت و حدود 3000 نفر نيز اين جشن را از طريق تلويزيون مدار بسته در خارج از محل اصلي تماشا کردند. در طول شش سال بعد، چند خانواده ديگر از ابررساناها کشف شدند که شامل تركيبات شامل توليوم (Tl) و جيوه (Hg) بوده و داراي حداکثر دماي بحراني بيشتر از 120 درجه کلوين بودند. بالاترين مقدار تأييد شده دماي بحراني در فشار معمولي يك اتمسفر، 135 درجه كلوين و متعلق به HgBa2Ca2Cu3O8 ميباشد. به صورت تجربي معلوم شده است اگر ماده ابررسانا به صورت مكانيكي تحت فشار قرار گيرد، دماي بحراني ابررسانا كمي تغيير ميكند. در سال 1993، دماي بحراني 165 درجه كلوين (108- درجه سانتيگراد) نيز در تركيبي از اكسيد مس و جيوه و البته تحت فشارهاي خيلي بالا گزارش شد. همگي ابررساناهاي مورد اشاره يک ويژگي مشترك داشتند. وجود سطوح تراز شامل اتمهاي اكسيژن و مس که با مواد حامل بار براي سطوح تراز از يكديگر جدا ميشوند. با توجه به كاربردهاي مختلف ابررساناها، بسياري از تلاشها بر افزايش دماي عملكرد ابررساناها تا دستيابي به دماي اتاق متمركز شده است.
هر چند دماي بحراني تركيبات جديد سراميكي در حد قابل توجهي از دماي بحراني مواد ابررساناي متعارف (فلزات و آلياژها) بزرگتر است، به دليل خصوصيات فيزيكي اين مواد مانند شكنندگي و پايين بودن چگالي و جريان بحراني كاربردهاي اين مواد هنوز در مرحلهي تحقيق است. اخيراً سعيد سلطانيان به همراه يك گروه علمي به سرپرستي پروفسور شي زو دو در دانشگاه ولونگونگ استراليا ابررسانايي ساختهاند كه بالاترين ركورد را از نظر خواص مكانيكي در ميان ابررسانا دارد. اين ابررسانا به شكل سيم يا نواري از جنس دي بريد منيزيم (MgB2) با پوششي از آهن است و امكان انعطاف براي ساخت تجهيزات مختلف الكتريكي را داراست.
ابررساناهاي جديد عموماً سراميكي و اكسيدهاي فلزي ورقه ورقه هستند که در دماي اتاق مواد نسبتاً بيارزشي محسوب ميشوند و البته كاربردهاي متفاوتي نيز دارند. اكسيدهاي فلزي ابررسانا در مقايسه با فلزات شامل کمي حامل بار معمولي هستند و داري خواص انيسوتوروپيک الکتريکي و مغناطيسي ميباشند. اين خواص به نحو قابل ملاحظهاي حساس به محتواي اكسيژن ميباشند. نمونههاي ابررساناي موادي مانند YBa2Cu3O7 را يک دانشآموز دبيرستاني نيز ميتواند در يک اجاق ميکروويو توليد کند اما براي تشخيص خواص فيزيکي ذاتي، کريستالهاي يکتايي با درجه خلوص بالا مورد نياز است كه فرآيند ساخت پيچيدهاي دارند.
بعد از كشف ابررساناها، تا چند سال تصور ميشد رفتار مغناطيسي ابررسانا مانند رساناهاي كامل است. اما در سال 1933 مايسنر و اوشنفلد دريافتند اگر ماده مورد آزمايش قبل از ابررسانا شدن در ميدان مغناطيسي باشد، شار از آن عبور ميكند ولي وقتي در حضور ميدان به دماي بحراني برسد و ابررسانا گردد ديگر هيچگونه شار مغناطيسي از آن عبور نخواهد كرد و تبديل به يك ديامغناطيس كامل ميشود كه شدت ميدان (B) درون آن صفر خواهد بود. آنها توزيع شار در خارج نمونههاي قلع و سرب را كه در ميدان مغناطيسي تا زير دماي گذار سرد شده بودند را اندازهگيري و مشاهده كردند كه ابررسانا ديامغناطيس كامل گرديد و تمام شار به بيرون رانده شد. اين آزمايش نشان داد كه ماده ابررسانا چيزي بيشتر از ماده رساناي كامل است. براساس ويژگي مهم ابررساناها، فلزات در حالت ابررسانايي هرگز اجازه نميدهند كه چگالي شار مغناطيسي در درون آنها وجود داشته باشد. به عبارت ديگر در داخل ابررسانا هميشه B=0 است. اين پديده به اثر مايسنر معروف شد.
در اثر پديده مايسنر اگر يك آهنربا روي ماده ابررسانا قرار گيرد، روي آن شناور ميماند. در شكل يك آهنرباي استوانهاي روي يك قطعه ابررسانا كه توسط نيتروژن خنك شده شناور است. علت شناور ماندن، اثر مايسنر است كه براساس آن خطوط ميدان مغناطيسي امكان عبور از ابررسانا را نيافته و چنانكه مشاهده ميشود، ابررسانا قرص مغناطيسي را شناور نگه ميدارد.
پس از کشف ديامغناطيس بودن ابررساناها، در سال 1950 آلياژهاي ابررسانايي مانند سرب+بيسموت و سرب+تيتانيوم كشف شدند که ميدانهاي بحراني خيلي بالايي از خود نشان ميدادند. پژوهشهاي بعدي نشان داد که اين مواد نوع متفاوتي از ابررساناها هستند که بعداً نوع II ناميده شدند. لاندن با استفاده از موازنه انرژي در محدوده کوچکي بين مرز فازهاي ابررسانا و نرمال، شرط تعادل فاز را به دست آورده و به حضور يک سطح انرژي ديگر با منشأ غيرمغناطيسي اشاره کرد كه علاوه بر انرژي مرز بين دو فاز ابررسانا و نرمال وجود داشت. وي متذکر شد که اگر سطح انرژي کل مثبت باشد ابررسانايي ازنوع اول و اگر منفي باشد از نوع دوم است که در اين صورت ميدان مغناطيسي به درون ابررسانا نفوذ ميکند. در سال 2003 نيز آلكسي آبريكوزوف و ويتالي گينزبورگ به خاطر بسط تئوري ابررسانايي همراه با آنتوني لگت برنده جايزه نوبل فيزيك شدند.
به تازگي هم پژوهشگران فرانسوي خاصيت جديدي را در ابررساناها پيدا كردهاند كه قبلاً در هيچ نظريهاي پيشبيني نشده بود. چنانكه اشاره شد خواص ابررسانايي در مواد، به دماي محيط، ميدان مغناطيسي و شدت جريان عبوري بستگي دارد. محققان فرانسوي بلوري ساخته بودند كه در دماي 04/0 درجه كلوين ابررسانا ميشد و وقتي شدت ميدان مغناطيسي به بيشتر از 2 تسلا ميرسيد، اين خاصيت از بين ميرفت. يكي از پژوهشگران اين گروه، از روي كنجكاوي، شدت ميدان مغناطيسي را باز هم بيشتر كرد. وقتي شدت ميدان به 12 تسلا رسيد، بلور دوباره ابررسانا شد. وقتي ميدان باز هم بالاتر رفت، اين خاصيت دوباره از بين رفت. اين گزارش كه اخيراً در نشريه علمي ساينس به چاپ رسيده، توجه بسياري از فيزيكدانان حالت جامد را برانگيخته است چرا كه هيچ توضيح خاصي براي اين پديده وجود ندارد. با توجه به موارد گفته شده، به نظر ميرسد كه ميدان مغناطيسي متغير باعث ايجاد رفتارهاي جالب پيشبيني نشده در ابررساناها ميشود. البته بايد توجه داشت كه ابررسانايي يك خاصيت كاملاً كوانتمي است و به سادگي نميتوان وضعيت پيش آمده در اين آزمايش را توصيف كرد.