روش‎‎های کاهش مصرف انرژی الکتریکی موتورها

0
2428

موتورها مصرف‎‎کننده‎‎های عمده برق در اغلب کارخانه‎‎ها هستند. وظیفه یک موتورالکتریکی تبدیل انرژی الکتریسیته به‎ انرژی مکانیکی است. در یک موتور سه‎‎فاز AC جریان از سیم‎‎پیچ‎‎های موتور عبور کرده و باعث ایجاد میدان مغناطیسی دواری می‎شود که این میدان مغناطیسی محور موتور را می‎‎چرخاند. موتورها به‎‎‎گونه‎‎ای طراحی شده‎‎اند که این وظیفه را به‎‎‎خوبی انجام دهند. مهم‎‎ترین و ابتدایی‎‎ترین گزینه صرفه‎‎جویی در موتورها مربوط‎‎به‎ انتخاب آنها و استفاده از آنها می‎‎باشد.

۱- هرزگردی موتورها
بیشترین صرفه‎‎جویی مستقیم برق را می‎‎توان با خاموش کردن موتورهای بی‎‎بار و درنتیجه حذف تلفات بی‎‎باری به‎‎‎دست آورد. روش ساده آن درعمل نظارت دایم یا کنترل اتوماتیک است. اغلب به‎ مصرف برق در بی‎‎باری اهمیت چندانی داده نمی‎‎شود درحالی‎‎که غالباً جریان در بی‎‎باری حدود جریان در بار کامل است.
مثالی از این نوع تلفات را می‎‎توان در واحدهای بافندگی یافت، جایی‎‎که ماشین‎‎های دوزندگی معمولاً برای دوره‎‎های کوتاهی کار می‎‎کنند. اگرچه موتورهای این ماشین‎‎ها نسبتاً کوچک هستند (۱٫۳ اسب بخار) ولی چون تعداد آنها زیاد است (معمولاً تعداد آنها در یک کارخانه به‎ صدها عدد می‎‎رسد) اندازه این تلفات قابل‎‎ملاحظه است. اگر فرض کنیم ۲۰۰ موتور ۱٫۳ اسب‎‎بخار در ۹۰درصد زمان هرزگرد بوده و باری معادل ۸۰درصد بار کامل بکشند، هزینه کار بیهوده موتورها با درنظر گرفتن ۱۲۰ریال بهای واحد انرژی الکتریکی ، به‎‎‎شکل زیر محاسبه می‎شود:
هزینه بی‎‎باری = ۲۰۰موتور×۳/۱ اسب‎‎بخار × ۸۰% بار × ۶۰۰۰ساعت در سال × ۹۰% بی‎‎باری ×۱۲۰ریال= ۲۵میلیون ریال
 
با اتصال یک سوئیچ به‎ پدال چرخ‎‎ها می‎‎توان آنها را به‎‎‎طور اتوماتیک خاموش کرد.
 
۲- کاهش بازده در کم‎‎باری
وقتی از موتوری استفاده شود که مشخصات نامی بالاتر از مقدار مورد نیاز را داشته باشد، موتور در بارکامل کار نمی‎‎کند و در این‎‎حالت بازده موتور کاهش می‎‎یابد.
استفاده از موتورهای بزرگتر از اندازه موردنیاز معمولاً به‎ دلایل زیر است :
– ممکن است پرسنل مقدار بار واقعی را ندانند و بنابه احتیاط موتوری بزرگتر از اندازه موردنیاز انتخاب شود
– طراح یا سازنده برای اطمینان از اینکه موتور توان کافی را داشته باشد، موتوری بسیار بزرگتر از اندازه واقعی موردنیاز پیشنهاد ‎‎کند و بار حداکثر درعمل به‎‎‎ندرت اتفاق ‎‎افتد. به‎‎‎علاوه اغلب موتورها می‎‎توانند برای دوره‎‎های کوتاه در باری بیشتر از بار کامل نامی کار کنند. (درصورت تعدد این وسایل اهمیت مسئله بیشتر می‎شود)
– وقتی موتور با مشخصات نامی موردنظر در دسترس نیست یک موتور بزرگتر نصب می‎شود و حتی وقتی موتوری با اندازه نامی موردنظر پیدا می‎شود جایگزین نشده و موتور بزرگ همچنان به‎ کار خود ادامه می‎‎دهد.
– به‎‎‎خاطر افزایش غیرمنتظره در بار که ممکن است هیچگاه هم رخ ندهد یک موتور بزرگتر انتخاب می‎شود.
– نیازهای فرآیند تولیدی کاهش یافته است
در برخی بارها گشتاور راه‎‎انداز بسیار بیشتر از گشتاور دورنامی است و باعث می‎شود موتور بزرگتر به‎‎‎کار گرفته شوند.
باید مطمئن شد هیچ کدام از این موارد موجب استفاده از موتورهایی بزرگتر از اندازه و درنتیجه کاهش بازده نشده باشند.
 
 
جایگزینی موتورهای کم‎‎بار با موتورهای کوچکتر باعث می‎شود که موتور کوچکتر با بار کامل دارای بازده بیشتری باشد. این جایگزینی معمولاً برای موتورهای بزرگتر وقتی در ۳/۱ تا نصف ظرفیت‎‎شان (بسته به‎ اندازه‎‎شان) کار می‎‎کنند اقتصادی است.
برای تشخیص موتورهای بزرگتر از ظرفیت مورد نیاز به‎ اندازه‎گیری‎‎ الکتریکی احتیاج است. وات‎‎متر مناسب‎‎ترین وسیله‎‎است.
روش دیگر، اندازه‎گیری سرعت واقعی و مقایسه آن با سرعت نامی است. بار جزئی به‎‎‎عنوان درصدی از بار کامل نامی را می‎‎توان از تقسیم شیب(سرعت) عملیات بر شیب بار کامل به‎‎‎دست آورد. رابطه بین بار و شیب تقریباً خطی است. معمولاً در این موارد می‎‎توان برای جلوگیری از سرمایه‎‎گذاری جدید اینگونه موتورها را با دیگر موتورهای موجود در کارخانه جایگزین نمود که تنها هزینه آن اتصالات و صفحه‎‎های تنظیم‎‎کننده هستند. اگر این تغییرات را بتوان همزمان با تعمیرات برنامه‎‎ریزی‎‎شده در کارخانه انجام داد بازهم هزینه‎‎ها کاهش می‎‎یابد.
                                          
۳- موتورهای پربازده
بازگشت سرمایه قیمت اضافی پرداختی جهت خرید موتورهای پربازده، معمولاً کمتراز دو سال کارکرد موتور به‎‎‎ازای ۴۰۰۰ ساعت کارکرد سالانه و در ۷۵درصد بار می‎باشد. (بازگشت سرمایه نسبت به‎ موتورهای قدیمی و غیر استاندارد به‎ کمتر از شش ماه نیز می‎‎رسد) درمواردی که بار موتور سبک یا ساعت کارکرد آن کم است یا بارهای تناوبی استثنائاتی وجود دارد. بیشترین صرفه‎‎جویی در رنج موتورهای ۱ تا ۲۰ اسب‎‎بخار به‎‎‎دست می‎‎آید. در توان بیشتر از ۲۰ اسب‎‎بخار افزایش بازده کاهش می‎‎یابد و موتورهای موجود بیش از ۲۰۰ اسب‎‎بخار تقریباً دارای بازده کافی هستند.
سازندگان معمولاً موتورهای با طراحی استاندارد و قیمت تمام‎‎شده کم‎‎تر را عرضه می‎‎کنند. به‎‎‎خاطر رقابت شدید این نوع موتورها بازده کمی دارند. آنها ضریب قدرت پایین‎‎تری دارند، قابل تعمیر نبوده و نمی‎‎توان به‎‎‎راحتی سیم‎‎پیچ آنها را مجدداً پیچید.
در موتورهای پربازده با استفاده از ورقه‎‎های استیل نازکتر در استاتور و روتور، استفاده از استیل با خواص الکترومغناطیسی بهتر، استفاده از فن‎‎های کوچکتر با بازده بیشتر و بهبود طراحی شکاف روتور بازده افزایش یافته است. تمام این روش‎‎ها باعث افزایش مصرف مواد اولیه و درنتیجه افزایش هزینه‎‎ مواد یا هزینه‎‎های ساخت می‎شود و بنابراین قیمت تمام شده موتور زیاد می‎شود. بااین وجود ۳۰-۲۰ درصد اضافه هزینه اولیه با کاهش هزینه‎‎های عملیاتی جبران می‎شود. از دیگر مزایای موتورهای پربازده اثر کم بر عملکرد موتور به‎‎‎هنگام نوسانات ولتاژ و بار جزئی است. 
محاسبه بازگشت هزینه این موتورها به‎‎‎خاطر متغیرهای درگیر پیچیده است. برای تعیین هزینه عملیاتی موتور باید توان مصرفی توسط موتور در ساعات کار آن و قیمت انرژی الکتریکی ضرب شود. هریک از این فاکتورها  متغیرهای مخصوص به‎‎‎خود را دارند که شامل تغییر در برنامه زمانبندی تولید، تغییر در بار موتور و جریمه‎‎های دیماند می‎‎باشند. پرداختن به‎ برخی از این عوامل مشکل است.
حتی وقتی میزان صرفه‎‎جویی محاسبه می‎شود از آنجاکه بازده واقعی یک موتور معمولاً ناشناخته است ممکن است این محاسبات دچار خطا شوند. چون همه سازنده‎‎ها از تکنیک‎‎‎‎های یکسانی برای اندازه‎گیری بازده موتورها استفاده نمی‎‎کنند ، بنابراین مشخصات نامی درج‎‎شده بروی پلاک را نمی‎‎‎توان با هم مقایسه کرد. به‎عنوان نمونه در آمریکا منظور بیشتر سازنده‎‎ها‎‎ از بازده نامی رنجی از بازده‎‎ها است که بازده موتور در آن قرار می‎‎گیرد. از تکنیک‎‎های آماری مختلفی برای تعیین حداقل بازده یک موتور با هر بازده نامی استفاده می‎شود. به‎‎‎عنوان مثال یک موتور با بازده نامی ۹۰٫۲ % دارای حداقل بازده نامی ۸۸٫۵ % است.
عده زیادی موتورهای پربازده را بدون اینکه درصدد توجیه برگشت هزینه آن باشند ، استفاده می‎کنند ، مگر درمورد موتورهای بزرگتر. معمولاً مدت بازگشت هزینه تقریباً یک سال است.
بازده موتورها از مشخصات نامی آنها متفاوت است(به‎‎‎دست نمی‎‎آید). مثلاً یک موتور       ۱۰۰-hp.1800-rpm سرپوشیده با فن خنک‎‎ساز از یک سازنده دارای یک حداقل بازده تضمین‎‎شده معادل ۹۰٫۲درصد در بار کامل در مدل استاندارد و ۹۴٫۳درصد در مدل بازده بالا است. موتور هم‎‎اندازه آن از یک سازنده دیگر دارای همان بازده ۹۰٫۲درصد در مدل استاندارد و حداقل بازده ۹۱درصد در مدل بازده بالا است. برای تعیین بازده واقعی یک موتور خاص باید از تجهیزات تست پیچیده‎‎ای استفاده کرد.
به‎‎‎خاطر این اختلاف‎‎ها، به‎‎‎هنگام ارزیابی میزان صرفه‎‎جویی، استفاده از حداقل بازده تضمین‎‎شده قابل اطمینان‎‎تر است چون همه موتورها باید برابر یا بزرگتر از این اندازه باشند.
 
۴- درایوهای تنظیم سرعت
وقتی تجهیزات بتوانند در سرعت کاهش‎‎یافته کار کنند چند گزینه قابل انتخاب است.
مثال‎‎های ذیل نمونه‎‎هایی برای همه صنایع هستند
 
۱-۴- موتورهای AC فرکانس متغیر (با تنظیم فرکانس)
وقتی پمپ‎‎های گریز از مرکز، فن‎‎ها و دمنده‎‎ها در سرعت ثابت کار می‎‎کنند و خروجی با استفاده از والوها و مسدود‎‎کننده‎‎ها کنترل می‎شود موتور صرفنظر از مقدار خروجی در نزدیکی بار کامل کار می‎‎کند که باعث می‎شود انرژی زیادی توسط این مسدودکننده‎‎ها و والوها تلف شود. اگر این تجهیزات بتوانند همواره در سرعت مورد نیاز کار کنند مقدار زیادی انرژی صرفه‎‎جویی می‎شود. درایوهای تنظیم سرعت باعث می‎شوند تجهیزات باتوجه به نیاز سیستم در حالت بهینه عمل کنند.
کنترلرهای AC تنظیم فرکانس (فرکانس متغییر) وسایل پیچیده‎‎ای بوده و گرانقیمت هستند. بااین‎‎حال می‎‎توانند به‎‎‎راحتی به‎ موتورهای القایی AC استاندارد اضافه شوند. با هزینه تجهیزات کمتر و هزینه‎‎های الکتریکی بیشتر (با کاهش هزینه تجهیزات و افزایش هزینه‎‎های الکتریکی) کاربرد این وسایل در اغلب موارد اقتصادی می‎شود. بسیاری از انواع پمپ‎‎ها، فن‎‎ها، میکسچرها، نقاله‎‎ها، خشک‎‎کننده‎‎ها، خردکننده‎‎ها (سنگ‎‎شکن‎‎ها) آسیاب‎‎ها، صافی‎‎ها و برخی انواع کمپرسورها، دمنده‎‎ها و همزن‎‎ها در سرعت‎‎های مختلف با وسایل تنظیم سرعت کار می‎‎کنند.
تجهیزات مجهز به‎ تنظیم سرعت کمتراز نصف تجهیزات مجهز به‎ مسدودکننده انرژی مصرف می‎‎کنند.
در عمل باید برای محاسبه دقیق صرفه‎‎جویی حاصل براساس کیلووات بازده موتور هم درنظر گرفته شود. بازده موتور تا زیر۵۰درصد ظرفیت نامی افت می‎‎کند.

 
۲-۴-درایوهای DC حالت جامد (نیمه‎‎هادی)
می‎‎توان با تنظیم سرعت با استفاده از درایوهای DC صرفه‎‎جویی‎‎های مشابهی را انجام داد. هزینه اولیه نسبت‎‎به‎ درایوهای AC تنظیم فرکانس بیشتر است به‎‎‎خصوص وقتی مستقیماً بتوان از کنترلرهای الکتریکی در موتور ACاستفاده کرد. تعمیر و نگهداری کموتاتور و زغال نیز هزینه زیادی در درایوهای DC دربردارد. همچنین سیستم‎‎های DC نسبت‎‎به‎ هوای خورنده و کثیف (مملو ازذرات) که در یک محیط صنعتی معمول است حساس‎‎ترند.
بنابراین درایوهای AC معمولاً ترجیح داده می‎شوند مگر در مواردی که شرایط عملیاتی برخی از مشخصه‎‎های سیستم‎‎های DC از قبیل تنظیم سرعت خیلی دقیق، معکوس کردن سریع جهت، یا گشتاور ثابت در رنج سرعت نامی مورد نیاز باشد.از این درایوها در ماشین‎‎های حدیده ((drawing machins، پوشش‎‎دهنده‎‎ها (لعاب‎‎دهنده‎‎ها coaters) ماشین‎‎های تورق (laminators)، دستگاه‎‎های سیم‎‎پیچی (winders) و سایر تجهیزات استفاده می‎شود.
سایر تکنیک‎‎های تغییر سرعت موتور عبارت است از درایوهای لغزش (slip) الکترومکانیکی، درایوهای سیال. و موتورهای القایی (موتورهای با روتور سیم‎‎پیچی‎‎شده). این درایوها با تغییر درجه لغزش بین درایو و عنصر درحال حرکت سرعت را کنترل می‎‎کنند. چون قسمتی از انرژی مکانیکی که تبدیل به‎ بار نمی‎‎شود به‎ حرارت تبدیل می‎گردد این درایوها دارای بازده کمی بوده و معمولاً به‎‎‎خاطر مشخصه‎‎های خود در کاربردهای خاصی به‎‎‎کار برده می‎‎شوند. مثلاً ممکن است از درایوهای سیال در سنگ‎‎شکن‎‎ها (خردکننده‎‎ها) استفاده شوند چون دارای ظرفیت توان بالا، انتقال گشتاور آسان، توانایی مقاومت دربرابر بارهای شوک، قابلیت مقاومت در سیکل‎‎های سکون (ازکارافتادگی)، ماهیت ایمنی آن و قابلیت تحمل هوای ساینده را دارند.
چون درایوهای AC وDC  سرعت چرخنده اصلی را تغییر می‎‎دهند برای صرفه‎‎جویی در انرژی ترجیح داده می‎‎شوند.
 
۳-۴-درایوهای مکانیکی
درایوهای تنظیم سرعت مکانیکی ساده‎‎ترین و ارزانترین وسایل تغییر سرعت هستند. این نوع چرخ‎‎های قابل تنظیم می‎‎توانند در امتداد محور باز و بسته شوند و درنتیجه میزان تماس چرخ را با تسمه تنظیم کنند.
مزیت عمده درایوهای مکانیکی سادگی آنها ، سهولت تعمیر و نگهداری و هزینه پایین آنها است. یک سرویس تعمیر و نگهداری درحد متوسط و کنترل سرعت با دقت کم (معمولاً ۵درصد) از خصوصیات این درایوها است.
درایوهای تسمه‎‎ای برای گشتاورهای کم تا متوسط (۱۰۰اسب‎‎بخار) در دسترس هستند. بازده درایوهای تسمه‎‎ای ۹۵ درصد است و نسبت کاهش سرعت تا ۱۰به‎ ۱ می‎‎رسد.
از درایوهای زنجیری فلزی در گشتاور زیاد استفاده می‎شود. این درایوها مشابه درایوهای تسمه‎‎ای هستند فقط به‎‎‎جای تسمه‎‎های لاستیکی از تسمه‎‎های فلزی استفاده شده است.
 
۴-۴-کاهش یک سرعته
 وقتی فقط با یک کاهش سرعت به‎ نتیجه رضایت‎‎بخش برسیم گزینه ارزانتری را می‎‎توانیم انتخاب کنیم. اگرچه سرعت‎‎های متغییر این مزیت را دارند که در وضعیت‎‎های مختلف می‎‎توان سرعت بهینه را به‎‎‎کار برد، در مواقعی که رنج تغییر سرعت محدود است و زمانی که موتور باید در سرعت پایین‎‎تری کار کند نسبت ‎‎به‎ زمان کل کار موتور کم است احتمالاً یک کاهنده تک‎‎سرعته ازنظر هزینه و اثربخشی به‎‎‎صرفه‎‎تر است.
درایوهای تسمه‎‎ای: در این درایوها یک (یک‎‎بار) کاهش سرعت با کمترین هزینه همراه است چون به‎‎‎راحتی می‎‎توان چرخ‎‎ها را عوض کرد. ازآنجاکه با نصب دوباره چرخ‎‎های قدیمی براحتی می‎‎توان تغییرات را بازگرداند از این روش وقتی استفاده می‎شود که کاهش خروجی برای یک دوره معین موردنیاز است. مثلاً وقتی سطح تولید برای یک زمان نامشخص کاهش یافته ولی ممکن است در آینده نیاز باشد که به‎ ظرفیت اولیه برگردیم.
کاهش دور توسط چرخ‎‎دنده: حالت‎‎های مشابه‎‎ای را توسط تغییر چرخ‎‎دنده می‎‎توان به‎‎‎کار برد.
تعویض موتور: درمواردی که یک بار کاهش سرعت موردنیاز است یک موتور با سرعت کم‎‎تر را نیز می‎‎توان جایگزین‎‎نمود.
 
۵-۴-موتورهای دوسرعته
موتور دوسرعته یک راه‎‎حل اقتصادی میانه درمقایسه با استفاده از‎ درایوهای چندسرعته و سرعت ثابت است.
همانطورکه در مثال‎‎های قبلی بیان شد چون توان مصرفی با مکعب (توان سوم) سرعت متناسب است، صرفه‎‎جویی در انرژی اهمیت زیادی دارد. درعمل یک افزایش جزئی به‎‎‎خاطر تلفات اصطکاک رخ می‎‎دهد. از این روش و استفاده از روش‎‎های کنترلی دیگر می‎‎توان خروجی را در یک رنج محدود کنترل کرد.
دوسرعت را می‎‎توان از یک سیم‎‎پیچ به‎‎‎دست آورد ولی سرعت پایینی باید نصف سرعت بالایی باشد. مثلاً سرعت‎‎های موتور به‎ این شکل است ۹۰۰/۱۸۰۰ ، ۶۰۰/۱۲۰۰ ، ۱۸۰۰/۳۶۰۰
وقتی به نسبت‎‎های دیگری از سرعت نیاز است استفاده از یک استاتور دو سیم‎‎پیچه ضروری است. از موتورهای قفسی چندسرعته (multispeed squirrel cage motors) نیز که دارای سه یا چهار سرعت همزمان هستند می‎‎توان استفاده نمود. 
قیمت موتورهای دوسرعته تقریباً دو برابر موتورهای تک‎‎سرعته است. اگر یک موتور بتواند در دوره‎‎های زمانی محسوسی با سرعت کم‎‎تر کار کند صرفه‎‎جویی حاصله سرمایه‎‎گذاری اضافی را توجیه می‎‎کند. در موتورهای چندسرعته استارترهای گرانقیمتی موردنیاز است چون اندازه محافظ‎‎های اضافه‎‎بار در سرعت‎‎های مختلف متفاوت است.

 
۵-کاهش بار
مسلماً کاهش بار موتور یکی از بهترین روش‎‎های کاهش هزینه‎‎های الکتریکی است. تعمیر و نگهداری مناسب تجهیزات نیز می‎‎تواند با ازبین بردن تلفات ناشی از اصطکاک در تجهیزات نامیزان (غیر هم‎‎محور)، یاتاقان‎‎های سخت‎‎شده و نقاله‎‎ها، بار موتور را کاهش دهد. روغن‎‎کاری مناسب قسمت‎‎های متحرک مانند یاتاقان‎‎ها و زنجیرها تلفات ناشی از اصطکاک را به‎ حداقل می‎‎رساند. جایگزینی یاتاقان‎‎های غلطکی و بلبرینگ‎‎ها با یاتاقان‎‎های تخت به‎‎‎خصوص در شافت‎‎های انتقال نیز روش مؤثری است.
 
۶- گشتاور راه‎‎اندازی زیاد
در بارهایی که گشتاور استارت بزرگی نیاز دارند باید از یک موتورB -NEMA (رایج‎‎ترین موتور مورد استفاده در صنعت) یا موتورA  -NEMA استفاده کرد. درجایی‎‎که بارهای با اینرسی زیاد وجود دارد می‎‎توان از موتورهای کوچکتری که به‎‎‎گونه‎‎ای طراحی شده‎‎اند که قابلیت گشتاور زیاد را دارند استفاده کرد. یک موتور NEMA-B می‎‎تواند ازعهده بار زیاد استارت برآید ولی وقتی بار به‎ سرعت نهایی رسید موتور در کمتراز ظرفیت نامی کار می‎‎کند. ولی انتخاب یک موتور کوجکتر از از نوع  C-NEMA یا NEMA-D ضمن اینکه همان گشتاور راه‎‎انداز را تولید کرده ، در شرایط معمول عملیاتی نیز نزدیک بار کامل نامی کار می‎‎کند.

 
۷- موتورهایی که مجدداً پیچیده می‎‎شوند (موتورهای سوخته‎‎ای که سیم‎‎پیچی آنها عوض می‎شود)
بازده موتورهایی که برای بار دوم پیچیده می‎‎شوند کاهش می‎‎یابد که البته مقدار این کاهش بستگی به‎ کارگاهی دارد که موتور در آن پیچیده شده‎‎است، چون کارگاه‎‎های سیم‎‎پیچی لزوماً از بهترین روشی که عملکرد اولیه موتور را حفظ کند استفاده نمی‎‎کنند. در برخی موارد به‎‎‎دلیل بازده کم به‎‎‎خصوص در موتورهای کوچک پیچیدن دوباره موتور توجیه‎‎پذیر نیست.
درحالت ایده‎‎آل باید بازده موتور قبل و بعد از پیچیدن آن با هم مقایسه شود. یک روش تقریباً ساده برای ارزیابی کیفیت موتور پیچیده‎‎شده مقایسه جریان بی‎‎باری موتور است، این مقدار در موتورهایی که به‎‎‎خوبی پیچیده نشده باشند افزایش می‎‎یابد، بررسی روشی که درکارگاه سیم‎‎پیچی استفاده می‎شود، نیز می‎‎تواند کیفیت کار را مشخص کند. در زیر برخی نکاتی که باید موردتوجه قرارگیرد آمده است :
–     وقتی موتوری را برای پیچیدن مجدد باز می‎‎کنند، عایق بین ورقه‎‎ها خراب شده و باعث افزایش تلفات جریان گردابی می‎‎گردد مگر اینکه بازکردن (سوزاندن) عایق در کوره‎‎ای با دمای قابل تنظیم انجام شده و ورقه‎‎های عایق غیرآلی جایگزین گردد. 
–     گداختن و سوزاندن سیم‎‎پیچ کهنه (خراب‎‎شده) در دمای کنترل نشده یا استفاده از یک مشعل دستی برای نرم‎‎کردن و خردکردن لاک بین سیم‎‎ها به‎‎‎منظور بازکردن آسان‎‎تر سیم‎‎پیچ به‎ این معنی است که کار در این کارگاه به‎‎‎خوبی انجام نمی‎‎شود و باید به‎ کارگاه دیگری برای پیچیدن موتور مراجعه کرد.
–         اگر در نتیجه بازکردن و سوزاندن نامناسب تلفات هسته افزایش یابد، موتور در دمای بیشتری کار می‎‎کند و زودتر از موعد خراب می‎شود.
–     اگر تعداد دورهای سیم‎‎پیچ در استاتور کاهش یابد تلفات هسته استاتور افزایش می‎‎یابد این تلفات درنتیجه جریان نشتی (هارمونیک) القا شده توسط جریان بار به‎‎‎وجود می‎‎آید و اندازه آن برابر با توان دوم جریان بار است.
–         در پیچیدن موتور اگر از سیم‎‎های با قطر کوچکتر استفاده شود، مقاومت و درنتیجه تلفات   افزایش می‎‎یابد.
روش‎‎های پیچیدن موتور در کارگاه‎‎های مختلف تعمیراتی متفاوت است بنابراین قبل‎‎از تصمیم‎ به‎ پیچیدن دوباره موتور باید کارگاه‎‎ها کاملاً بررسی و بهترین کارگاه انتخاب شود.
شرکت Wanlass یک روش پیچیدن موتور ارائه کرده که مدعی است بازده را تا ده درصد افزایش می‎‎دهد این روش برمبنای جایگزینی سیم‎‎پیچ موجود با دو سیم‎‎پیچ است که به‎گونه‎‎ای طراحی شده‎‎اند که سرعت موتور را متناسب‎‎با بار تغییر دهد. درمورد ادعای بهبود بازده بحث‎‎های زیادی صورت گرفته و درحالی‎‎که از عرضه موتورهای Wanlass بیش‎‎از یک دهه می‎‎گذرد استفاده کننده‎‎های عمده معتقدند این نوع طراحی بهبودی را که می‎‎توان ازطریق تکنیک‎‎های متعارف طراحی موتور و سیم‎‎پیچ به‎‎‎دست آورد در صنعت موتور ارائه نکرده است.
 
۸- ژنراتور موتورها
یکسوکننده‎‎های نیمه‎‎هادی یک منبع مناسب جریان مستقیم DC برای موتورهای DC یا دیگر استفاده‎‎های از جریان DC هستند، ژنراتور موتورهایی که معمولاً برای جریان مستقیم به‎‎‎کار می‎‎روند قطعاً نسبت‎‎به‎ یکسوکننده‎‎های نیمه‎‎هادی بازده کمتری دارند بازده موتور ژنراتور در بار کامل حدود ۷۰ درصد است در حالیکه بازده یکسوکننده‎‎های نیمه‎‎هادی تقریباً ۹۶ دصد در بار کامل است. وقتی ژنراتور موتوری در کمتراز بار نامی کار کند بازده آن به‎‎‎طور قابل‎‎ملاحظه‎‎ای کاهش می‎‎یابد چون بازده آن برابر با حاصل‎‎ضرب بازده ژنراتور و موتور است.
 
۹- تسمه‎‎ها (Belts)
بازده درایوهای V-belt تأثیر زیادی در بازده موتور دارد. عوامل تأثیرگذار در بازده V-belt عبارتنداز:
۱- Overbelting: تسمه‎‎های با مشخصات نامی بالاتر باعث افزایش کارایی می‎شوند
۲- تنش (فشار): فشار نامناسب باعث کاهش بازده تا ۱۰ درصد می‎شود. بهترین فشار برای یک V-belt کمترین فشاری است که در آن تسمه در بار کامل نلغزد.
۳- اصطکاک: تلفات اصطکاک اضافی درنتیجه نامیزان بودن(غیرهم‎‎محوری)، فرسودگی چرخ‎‎ها تهویه نامطلوب یا مالیده شدن تسمه‎‎ها به‎ چیزی به‎‎‎وجود می‎‎آیند.
۴-  قطر چرخ: هرچه قطر چرخ بزرگتر باشد بازده افزایش می‎یابد.
جایگزینی V-beltهای شیاردار با V-beltهای متعارف صرفه‎‎جویی زیادی دربردارد. یک V-belt درمعرض تنش فشاری بزرگی متناسب با قطر چرخ قراردارد. ازآنجاکه در V-beltهای شیاردار در قسمت تحت‎‎فشار از ماده کمتری استفاده شده تغییر شکل لاستیک و تنش‎‎های فشاری به‎ حداقل می‎‎رسد بنابراین بازده عملیاتی در V-beltهای شیاردار بیشتر می‎شود.
اگر هزینه عملیاتی سالانه یک موتور ۶۰ اسب‎‎بخار (برای ۶۰۰۰ساعت) ۱۸۰۰۰ دلار باشد حتی یک درصد بهبود در بازده موتور باعث ۱۸۰ دلار صرفه‎‎جویی در سال می‎شود. هزینه اضافی برای ۶ تسمه با اندازه ۱۲۸ تقریباً ۷ دلار است.

bselectron.mihanblog.com

دیدگاه خود را بیان کنید

لطفا پیام خود را وارد نمایید
لطفا نام خود را در این قسمت وارد نمایید